8 Advanced Prompt Parsing Methods for AI Models
For parsing the IPrompt_v3_for_promptsFactory[]
data structure, we can consider the following approaches to transform it into precise prompts for large language models:
- Template-Based Concatenation
- Structured Assembly Method
- Priority-Based Sorting
- Conditional Dynamic Assembly
- Tag-Based Filtering Enhancement
- History-Aware Recursive Parsing
- Model-Specific Optimization
- Interactive Construction Method
1. Template-Based Concatenation
Parse different prompt types using predefined templates:
function parsePrompts(prompts: IPrompt_v3_for_promptsFactory[]): string {
const selectedPrompts = prompts.filter((p) => p.status === 'selected');
let finalPrompt = '';
// Group by type and concatenate in specific order
const context = selectedPrompts.filter((p) => p.type === EPrompt_v3_for_promptsFactory_type.CONTEXT);
if (context.length) finalPrompt += `## Background\n${context.map((p) => p.title).join('\n')}\n\n`;
const role = selectedPrompts.filter((p) => p.type === EPrompt_v3_for_promptsFactory_type.ROLE);
if (role.length) finalPrompt += `## Your Role\n${role.map((p) => p.title).join('\n')}\n\n`;
// Process other types similarly...
return finalPrompt;
}
2. Structured Assembly Method
Organize different prompt types into a structured JSON object, then convert to text based on predefined patterns:
function parsePrompts(prompts: IPrompt_v3_for_promptsFactory[]): string {
const selectedPrompts = prompts.filter((p) => p.status === 'selected');
const promptStructure = {
context: selectedPrompts.filter((p) => p.type === EPrompt_v3_for_promptsFactory_type.CONTEXT),
role: selectedPrompts.filter((p) => p.type === EPrompt_v3_for_promptsFactory_type.ROLE),
// Other types...
};
return convertStructureToText(promptStructure);
}
3. Priority-Based Sorting
Sort prompt elements based on importance and logical order, then concatenate:
function parsePrompts(prompts: IPrompt_v3_for_promptsFactory[]): string {
const selectedPrompts = prompts.filter((p) => p.status === 'selected');
// Define type priorities
const typePriority = {
[EPrompt_v3_for_promptsFactory_type.CONTEXT]: 1,
[EPrompt_v3_for_promptsFactory_type.ROLE]: 2,
[EPrompt_v3_for_promptsFactory_type.OBJECTIVE]: 3,
// Other type priorities...
};
// Sort by priority
selectedPrompts.sort((a, b) => typePriority[a.type] - typePriority[b.type]);
// Concatenate final prompt
return selectedPrompts.map((p) => `[${p.type}]: ${p.title}`).join('\n\n');
}
4. Conditional Dynamic Assembly
Adjust assembly strategy based on existing prompt types:
function parsePrompts(prompts: IPrompt_v3_for_promptsFactory[]): string {
const selectedPrompts = prompts.filter((p) => p.status === 'selected');
let finalPrompt = '';
// Check for specific types
const hasRole = selectedPrompts.some((p) => p.type === EPrompt_v3_for_promptsFactory_type.ROLE);
const hasObjective = selectedPrompts.some((p) => p.type === EPrompt_v3_for_promptsFactory_type.OBJECTIVE);
// Dynamically adjust template based on existing types
if (hasRole && hasObjective) {
// Role-oriented task template
finalPrompt = constructRoleBasedPrompt(selectedPrompts);
} else if (hasObjective) {
// Objective-oriented task template
finalPrompt = constructObjectiveBasedPrompt(selectedPrompts);
} else {
// Default template
finalPrompt = constructDefaultPrompt(selectedPrompts);
}
return finalPrompt;
}
5. Tag-Based Filtering Enhancement
Utilize tags property for more granular filtering and enhancement:
function parsePrompts(prompts: IPrompt_v3_for_promptsFactory[]): string {
const selectedPrompts = prompts.filter((p) => p.status === 'selected');
// Group by tags
const promptsByTag = {};
selectedPrompts.forEach((p) => {
if (p.tags) {
p.tags.forEach((tag) => {
if (!promptsByTag[tag]) promptsByTag[tag] = [];
promptsByTag[tag].push(p);
});
}
});
// Build specific prompt sections based on tag combinations
// ...
return finalPrompt;
}
6. History-Aware Recursive Parsing
Process prompts with history records by recursively parsing historical content:
function parsePrompts(prompts: IPrompt_v3_for_promptsFactory[], isRecursive = false): string {
const selectedPrompts = prompts.filter((p) => p.status === 'selected');
let finalPrompt = '';
for (const prompt of selectedPrompts) {
finalPrompt += `[${prompt.type}]: ${prompt.title}\n`;
// Recursively process history
if (prompt.history && prompt.history.length > 0) {
finalPrompt += `\nHistory:\n${parsePrompts(prompt.history, true)}\n`;
}
}
return finalPrompt;
}
7. Model-Specific Optimization
Customize prompt format based on target model characteristics:
function parsePrompts(prompts: IPrompt_v3_for_promptsFactory[], modelType: 'gpt4' | 'claude' | 'llama'): string {
const selectedPrompts = prompts.filter((p) => p.status === 'selected');
switch (modelType) {
case 'gpt4':
return formatForGPT4(selectedPrompts);
case 'claude':
return formatForClaude(selectedPrompts);
case 'llama':
return formatForLlama(selectedPrompts);
default:
return formatDefault(selectedPrompts);
}
}
8. Interactive Construction Method
Allow users to interactively adjust prompts during the construction process:
async function buildPromptInteractively(prompts: IPrompt_v3_for_promptsFactory[]): Promise<string> {
const selectedPrompts = prompts.filter((p) => p.status === 'selected');
let finalPrompt = '';
// Show preliminary constructed prompt
finalPrompt = basicParse(selectedPrompts);
// Allow user adjustments
const userFeedback = await getUserFeedback(finalPrompt);
// Adjust based on feedback
return adjustPromptBasedOnFeedback(finalPrompt, userFeedback);
}
These methods can be used individually or in combination to create the most suitable prompt parsing approach for specific use cases.