Skip to main content

8 Advanced Prompt Parsing Methods for AI Models

· 4 min read

For parsing the IPrompt_v3_for_promptsFactory[] data structure, we can consider the following approaches to transform it into precise prompts for large language models:

  1. Template-Based Concatenation
  2. Structured Assembly Method
  3. Priority-Based Sorting
  4. Conditional Dynamic Assembly
  5. Tag-Based Filtering Enhancement
  6. History-Aware Recursive Parsing
  7. Model-Specific Optimization
  8. Interactive Construction Method

1. Template-Based Concatenation

Parse different prompt types using predefined templates:

function parsePrompts(prompts: IPrompt_v3_for_promptsFactory[]): string {
const selectedPrompts = prompts.filter((p) => p.status === 'selected');
let finalPrompt = '';

// Group by type and concatenate in specific order
const context = selectedPrompts.filter((p) => p.type === EPrompt_v3_for_promptsFactory_type.CONTEXT);
if (context.length) finalPrompt += `## Background\n${context.map((p) => p.title).join('\n')}\n\n`;

const role = selectedPrompts.filter((p) => p.type === EPrompt_v3_for_promptsFactory_type.ROLE);
if (role.length) finalPrompt += `## Your Role\n${role.map((p) => p.title).join('\n')}\n\n`;

// Process other types similarly...

return finalPrompt;
}

2. Structured Assembly Method

Organize different prompt types into a structured JSON object, then convert to text based on predefined patterns:

function parsePrompts(prompts: IPrompt_v3_for_promptsFactory[]): string {
const selectedPrompts = prompts.filter((p) => p.status === 'selected');
const promptStructure = {
context: selectedPrompts.filter((p) => p.type === EPrompt_v3_for_promptsFactory_type.CONTEXT),
role: selectedPrompts.filter((p) => p.type === EPrompt_v3_for_promptsFactory_type.ROLE),
// Other types...
};

return convertStructureToText(promptStructure);
}

3. Priority-Based Sorting

Sort prompt elements based on importance and logical order, then concatenate:

function parsePrompts(prompts: IPrompt_v3_for_promptsFactory[]): string {
const selectedPrompts = prompts.filter((p) => p.status === 'selected');

// Define type priorities
const typePriority = {
[EPrompt_v3_for_promptsFactory_type.CONTEXT]: 1,
[EPrompt_v3_for_promptsFactory_type.ROLE]: 2,
[EPrompt_v3_for_promptsFactory_type.OBJECTIVE]: 3,
// Other type priorities...
};

// Sort by priority
selectedPrompts.sort((a, b) => typePriority[a.type] - typePriority[b.type]);

// Concatenate final prompt
return selectedPrompts.map((p) => `[${p.type}]: ${p.title}`).join('\n\n');
}

4. Conditional Dynamic Assembly

Adjust assembly strategy based on existing prompt types:

function parsePrompts(prompts: IPrompt_v3_for_promptsFactory[]): string {
const selectedPrompts = prompts.filter((p) => p.status === 'selected');
let finalPrompt = '';

// Check for specific types
const hasRole = selectedPrompts.some((p) => p.type === EPrompt_v3_for_promptsFactory_type.ROLE);
const hasObjective = selectedPrompts.some((p) => p.type === EPrompt_v3_for_promptsFactory_type.OBJECTIVE);

// Dynamically adjust template based on existing types
if (hasRole && hasObjective) {
// Role-oriented task template
finalPrompt = constructRoleBasedPrompt(selectedPrompts);
} else if (hasObjective) {
// Objective-oriented task template
finalPrompt = constructObjectiveBasedPrompt(selectedPrompts);
} else {
// Default template
finalPrompt = constructDefaultPrompt(selectedPrompts);
}

return finalPrompt;
}

5. Tag-Based Filtering Enhancement

Utilize tags property for more granular filtering and enhancement:

function parsePrompts(prompts: IPrompt_v3_for_promptsFactory[]): string {
const selectedPrompts = prompts.filter((p) => p.status === 'selected');

// Group by tags
const promptsByTag = {};
selectedPrompts.forEach((p) => {
if (p.tags) {
p.tags.forEach((tag) => {
if (!promptsByTag[tag]) promptsByTag[tag] = [];
promptsByTag[tag].push(p);
});
}
});

// Build specific prompt sections based on tag combinations
// ...

return finalPrompt;
}

6. History-Aware Recursive Parsing

Process prompts with history records by recursively parsing historical content:

function parsePrompts(prompts: IPrompt_v3_for_promptsFactory[], isRecursive = false): string {
const selectedPrompts = prompts.filter((p) => p.status === 'selected');
let finalPrompt = '';

for (const prompt of selectedPrompts) {
finalPrompt += `[${prompt.type}]: ${prompt.title}\n`;

// Recursively process history
if (prompt.history && prompt.history.length > 0) {
finalPrompt += `\nHistory:\n${parsePrompts(prompt.history, true)}\n`;
}
}

return finalPrompt;
}

7. Model-Specific Optimization

Customize prompt format based on target model characteristics:

function parsePrompts(prompts: IPrompt_v3_for_promptsFactory[], modelType: 'gpt4' | 'claude' | 'llama'): string {
const selectedPrompts = prompts.filter((p) => p.status === 'selected');

switch (modelType) {
case 'gpt4':
return formatForGPT4(selectedPrompts);
case 'claude':
return formatForClaude(selectedPrompts);
case 'llama':
return formatForLlama(selectedPrompts);
default:
return formatDefault(selectedPrompts);
}
}

8. Interactive Construction Method

Allow users to interactively adjust prompts during the construction process:

async function buildPromptInteractively(prompts: IPrompt_v3_for_promptsFactory[]): Promise<string> {
const selectedPrompts = prompts.filter((p) => p.status === 'selected');
let finalPrompt = '';

// Show preliminary constructed prompt
finalPrompt = basicParse(selectedPrompts);

// Allow user adjustments
const userFeedback = await getUserFeedback(finalPrompt);

// Adjust based on feedback
return adjustPromptBasedOnFeedback(finalPrompt, userFeedback);
}

These methods can be used individually or in combination to create the most suitable prompt parsing approach for specific use cases.

Resources